Math 245B Lecture 22 Notes

Daniel Raban

March 6, 2019

1 More L^p Duality and Existence of Kernel Operators

1.1 L^p duality, continued

Let's finish up our proof of L^p duality.

Theorem 1.1. If $1 , then the map <math>L^q \to (L^p)^*$ sending $g \mapsto \varphi_g$ is an isometric isomorphism. If μ is σ -finite, the same holds for p = 1.

We are covering the case for when μ is finite. Here is a useful lemma.

Lemma 1.1. If $\mu(X) < \infty$, then $L^p \subseteq L^1$ for all $p \ge 1$.

Proof. By Hölder's inequality, if $f \in L^p$, then

$$\int |f| \, d\mu \int |f\mathbb{1}_X| \, d\mu \le \|f\|_p \|\mathbb{1}_X\|_q \le \|f\|_p (\mu(X))^{1/q}.$$

Last time, we showed the following propositions.

Proposition 1.1. $\|\varphi_g\|_{(L^p)*} = \|g\|_{L^q}$

Proposition 1.2. If $g \in L^1$ and Σ is the set of simple functions, then

$$\|g\|_q = \sup\left\{ \left| \int fg \, d\mu \right| : f \in \Sigma, \|f\|_p \le 1 \right\}$$

In particular, the left hand side is ∞ if and only if the right hand side is, as well.

Now we can complete our proof of the main theorem.

Proof. Let $\varphi \in (L^p)^*$. We proceed in steps:

Step 1: For $E \subseteq \mathcal{M}$, define $\nu(E) := \varphi(\mathbb{1}_E)$. This uses the assumption that $\mu(X) < \infty$. We claim that ν is a complex measure on (X, \mathcal{M}) . We have $\nu(\emptyset) = \varphi(0) = 0$, and finite additivity is not too hard to check. Let's check countable additivity. Let $(E_n)_n \subseteq \mathcal{M}$ be disjoint. Then $\mathbb{1}_{\bigcup_n E_n} = \sum_n \mathbb{1}_{E_n}$. To control the tail of this series, we have

$$\left\|\sum_{n=k}^{\infty} \mathbb{1}_{E_n}\right\| = \left\|\mathbb{1}_{\bigcup_{n=k}^{\infty} E_n}\right\| = \mu \left(\bigcup_{n=k}^{\infty} E_n\right)^{1/p}$$

which goes to 0 since $\mu(X) < \infty$ and $p < \infty$. So by continuity of φ on L^p , we have

$$\nu\left(\bigcup_{n} E_{n}\right) = \varphi\left(\mathbb{1}_{\bigcup_{n} E_{n}}\right) = \varphi\left(\sum_{n} \mathbb{1}_{E_{n}}\right) = \sum_{n} \nu(E_{n}).$$

Step 2: Also, $\nu \ll \mu$. Indeed, if $\mu(E) = 0$, then $\mathbb{1}_E = 0$ μ -a.e. So $\nu(E) = 0$. By the Radon-Nikodym theorem, there exists $g \in L^1_{\mathbb{C}}(\mu)$ such that $d\nu = g d\mu$.

Step 3: If $f \in \Sigma$, then $\int fg \, d\mu = \int f \, d\nu = \varphi(f)$ by linearity. We know this is bounded in absolute value by $\|\varphi\|_{(L^p)^*} \|f\|_p$. Our propositions give us that $g \in L^q$ and $\|g\|_q \leq \|\varphi\|_{(L^p)^*}$. We know that that $\varphi_g|_{\Sigma} = \varphi|_{\Sigma}$. So $\varphi_g = \varphi$ on a dense subspace of L^p , so continuity gives that $\varphi_g = \varphi$.

Corollary 1.1. If $1 , then <math>L^p$ is reflexive.

Proof. We know $1 < q < \infty$, so $(L^p)^{**} = (L^q)^* = L^p$.

Remark 1.1. For interesting μ , L^1 and L^{∞} are not reflexive.

1.2 Existence of kernel operators in L^p

Theorem 1.2. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces. Suppose

- 1. $K: X \times Y \to \mathbb{C}$ is measurable,
- 2. there exists C > 0 such that $||(x, \cdot)||_{L^1(\nu)} \leq C$ for μ -a.e. x,
- 3. there exists C > 0 such that $\|(\cdot, y)\|_{L^1(\mu)} \leq C$ for ν -a.e. y.

Then there for all $p \in [1, \infty]$ and $f \in L^p(\nu)$, the integral

$$Tf(x) = \int_{Y} K(x, y) f(y) \, d\nu(y)$$

exists μ -a.e., $Tf \in L^p(\mu)$, and $\|Tf\|_{L^p(\mu)} \leq C \|f\|_{L^p(\nu)}$.

We will check the cases where $p \neq 1, \infty$.

Proof. The conjugate exponent $q \in (1, \infty)$. Let $x \in X$. Here is the key idea:

$$|K(x,y)f(y)| = |K(x,y)|^{1/q} \left(|K(x,y)|^{1/p} |f(y)| \right).$$

Apply Hölder's inequality to get

$$\int |K(x,y)f(y)| \, dy \le \left(\int |K(x,y)| \, d\nu(y) \right)^{1/q} \left(\int \left(|K(x,y)|^{1/p} |f(y)| \right)^p \right) \, d\nu(y)^{1/p} \\ \le C^{1/q} \left(\int |K(x,y)| |f(g)|^p \, d\nu(y) \right)^{1/p}.$$

By Tonelli's theorem,

$$\int \left[\int |K(x,y)| |f(g)|^p \, d\nu(y) \right] \, d\mu(x) = \int \left[\int |K(x,y)| \, d\mu(x) \right] |f(y)|^p |f(y)|^p \, d\nu(y)$$

$$\leq C \int |f(y)|^p \, d\nu(y) = C ||f||_{L^p(\nu)}.$$

Overall, we get

$$\begin{split} \int \left[\int |K(x,y)| |f(y)| \, d\nu(y) \right]^p \, d\mu(x) &\leq C^{p/q} \int \int |K(x,y)| |f(y)|^p \, d\nu(y) \, d\mu(x) \\ &\leq C^{p/q} C \|f\|_{L^p(\nu)}^p \\ &= C^p \|f\|_{L^p(\nu)}^p. \end{split}$$

So Tf(x) is well-defined μ -a.e., and $\|Tf\|_p^p \leq \text{LHS} \leq C^p \|f\|_p^p$, so $\|T\|_{\mathcal{L}(L^p, L^p)} \leq C$. \Box